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Abstract
The issue of blast-induced ground vibration poses a significant environmental challenge in open-pit mines, necessitating precise prediction
and control measures. While artificial intelligence and machine learning models hold promise in addressing this concern, their accuracy
remains a notable issue due to constrained input variables, dataset size, and potential environmental impact. To mitigate these challenges,
data enrichment emerges as a potential solution to enhance the efficacy of machine learning models, not only in blast-induced ground
vibration prediction but also across various domains within the mining industry. This study explores the viability of utilizing machine
learning for data enrichment, with the objective of generating an augmented dataset that offers enhanced insights based on existing
data points for the prediction of blast-induced ground vibration. Leveraging the support vector machine (SVM), we uncover intrinsic
relationships among input variables and subsequently integrate them as supplementary inputs. The enriched dataset is then harnessed
to construct multiple machine learning models, including k-nearest neighbors (KNN), classification and regression trees (CART), and
random forest (RF), all designed to predict blast-induced ground vibration. Comparative analysis between the enriched models and their
original counterparts, established on the initial dataset, provides a foundation for extracting insights into optimizing the performance of
machine learning models not only in the context of predicting blast-induced ground vibration but also in addressing broader challenges

within the mining industry.

Keywords: blast-induced ground vibration, data enrichment, sustainable and responsible mining, machine learning, open-pit mining,

performance improvement

1. Introduction

Surface mining stands as one of the prevailing techniques
for the exploitation of minerals, fossil fuels, and metals, char-
acterized by its high degree of mechanization and productivi-
ty. Among the array of rock fragmentation methods employed
in open-pit mining operations, drilling and blasting emerge
as the most prevalent approach for fracturing rocks prior
to subsequent unit operations like loading and hauling. The
advantages of blasting are well-documented and undeniable;
however, its detrimental repercussions, including blast-in-
duced ground vibration (measured by peak particle velicity
- PPV), flyrock, airblast, and air pollution [1-4], cannot be
disregarded. Among these consequences, PPV is a particu-
larly perilous phenomenon that exerts a profound impact on
adjacent areas, notably open-pit mines situated in proximity
to residential zones. Although efforts have been invested in
assessing such hazards and proposing probabilistic risk-based
models to manage these challenges, ensuring the safety of
blasting operations [5], the complexity of blasting remains
evident, encompassing a spectrum of potential accident risk
scenarios [6]. Indeed, numerous structures have borne the
brunt of PPV-induced cracks, and several slopes and benches
have experienced subsidence or instability owing to the ele-
vated magnitude of PPV within open-pit mines [7, 8]. Con-
sequently, the accurate prediction of PPV intensity becomes

a critical imperative, serving not only the preservation of
neighboring structures but also the operational efficiency of
open-pit mining ventures.

To achieve this goal, numerous researchers have put forth
diverse predictive models aimed at estimating PPV. These
models can be categorized into two primary groups: empirical
models [8-11] and artificial intelligence (AI)-based models
[12-19]. While empirical models have been endorsed despite
their inherent accuracy limitations, Al-based models have
garnered recognition for their exceptional performance. Pres-
ently, an increasing number of novel Al-based models have
emerged, offering promising outcomes for PPV prediction, as
well as other challenges not only within the realm of blasting
but also across the broader mining industry [7, 20-34].

However, the majority of existing research has predom-
inantly concentrated on enhancing predictive models using
various techniques applied to raw datasets, or employing ba-
sic data analysis methods such as feature selection and outlier
removal. In contrast, datasets containing more comprehen-
sive and detailed information possess the potential to offer
invaluable insights to predictive models. Such datasets can
significantly aid predictive models in elucidating the intricate
relationships between dependent and independent variables.
Strikingly, these approaches appear to have been underex-
plored in the context of predicting the adverse effects of blast-

Inzynieria Mineralna — Lipiec - Grudzieti 2023 July - December — Journal of the Polish Mineral Engineering Society 79



B Testing point
A Nearest neighbor training points
@ Non-neighbor training points

g
e
E
2
° o~
4 A
o ' A
m
4
. \\ P
e ~--
®
®
°
°

Feature F,

Fig. 1. lllustration of KNN algorithm for two-dimensional feature space [44]

Dt1 Dt2

Din

PPV predictions
Fig. 2. Workflow of RF in predicting blast-induced PPV [52]

Fig. 3. Location and a view of the Coc Sau open-pit coal mine

ing in open-pit mines, including the prediction of PPV.
Hence, within the scope of this investigation, we intro-
duce a novel approach focused on enhancing the PPV dataset
as a precursor to the development of predictive models uti-
lizing machine learning algorithms. Specifically, the support
vector machine (SVM) algorithm was harnessed to discern
the intricate relationships within the original PPV dataset's
input variables. The resultant findings were then amalgam-
ated with the initial dataset, culminating in the creation of
an augmented dataset—referred to as the enriched dataset—
containing a more expansive set of input variables. Subse-
quently, we crafted three distinct machine learning models:
classification and regression trees (CART), k-nearest neigh-
bors (KNN), and random forest (RF). These models were con-
structed employing both the original dataset and the enriched
dataset, facilitating a comprehensive comparative analysis for
PPV prediction within open-pit mining contexts. It is note-

worthy that the enrichment technique proposed in this study
is distinct from ensemble modeling approaches such as bag-
ging, boosting, or stacking techniques [35-37].

2. Methodology
2.1. Data enrichment

Data enrichment refers to the process of enhancing or ex-
panding the existing information or data sets by adding addi-
tional relevant details or attributes. It involves augmenting raw
data with various types of supplemental information to make it
more valuable and useful for analysis, soft computing models,
decision-making, and other business purposes. The objective of
data enrichment is to provide a more comprehensive and accu-
rate understanding of the data by filling in missing gaps, cor-
recting errors, or adding context. By enhancing the quality and
depth of data, organizations can gain deeper insights, improve
customer understanding, and make more informed decisions.
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Fig. 4. Visualization of the original dataset used in this study
Tab. 1. Statistical parameters of the original dataset
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Fig. 5. PPV resulting from blasting operation at the Coc Sau open-pit coal mine
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Fig. 6. Visualization of the enriched dataset used in this study

Tab. 1. Statistical parameters of the original dataset

B s f PF Q D
Min. :2.400 Min. :4.200 Min. :10.00 Min. :0.4000 Min. :240.0 Min. :152.4
1st Qu.:5.175 1st Qu.:4.900 1st Qu.:10.00 1st Qu.:0.4000 1st Qu.:318.5 1st Qu.:184.4
Median :6.150 Median :5.500 Median :12.00 Median :0.4500 Median :370.5 Median :217.5
Mean :5.854 Mean :5.582 Mean :11.03 Mean :0.4528 Mean :365.9 Mean :218.1
3rd Qu.:6.800 3rd Qu.:6.250 3rd Qu.:12.00 3rd Qu.:0.5000 3rd Qu.:410.2 3rd Qu.:239.8
Max. :7.400 Max. :7.000 Max. :12.00 Max. :0.5000 Max. :469.0 Max. :324.7

Al A2 A3 A4 A5 PPV
Min. :2.850 Min. :2.778 Min. :2.678 Min. :2.640 Min. :2.648 Min. :2.860
1st Qu.:3.600 1st Qu.:3.690 1st Qu.:3.694 1st Qu.:3.754 1st Qu.:3.766 1st Qu.:3.600
Median :4.842 Median :4.870 Median :4.940 Median :4.900 Median :4.881 Median :4.920
Mean :4.959 Mean :4.959 Mean :4.960 Mean :4.934 Mean :4.930 Mean :4.961
3rd Qu.:6.197 3rd Qu.:6.138 3rd Qu.:6.147 3rd Qu.:6.100 3rd Qu.:6.036 3rd Qu.:6.270
Max. :7.328 Max. :7.253 Max. :7.367 Max. :7.283 Max. :7.281 Max. :7.220
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Fig. 7. Visualization of the final enriched dataset used (after analyzing) in this study

Data enrichment plays a crucial role in various domains,
especially in engineering problems, such as mining, civil
engineering, geotechnical engineering, material engineer-
ing, mechanics, to name a few. By leveraging the power of
enriched data, researchers can explore the insights of the
datasets, optimize operations, or enhancing problems they
encountered. There are several techniques that can be used
to enrich data for machine learning, including feature en-
gineering, data augmentation, imputation, oversampling
and undersampling, feature selection, and external data in-
tegration. Of those, data augmentation is a technique used
to artificially increase the size and diversity of a dataset by
applying various transformations to existing data samples. It
is commonly used to enrich the dataset for machine learn-
ing tasks. While data augmentation is primarily applied to
address challenges in computer vision tasks, such as image
classification, object detection, or segmentation, it can also
be adapted for other types of data, including regression and
time series data.

In this study, the SVM machine learning model was used
for data enrichment purposes. As a matter of fact, other ma-
chine learning algorithms can also do the same; however, in
this study, we selected the SVM algorithm as its popularity
and simple. Although the SVM is well-known as a black-box
model, however, it can explain the relationships between in-
dependent variables through a function.

Assume that we have a dataset contains eight input vari-
ables, named as X1, Xz, X3, X4, X5, X6, X7, Xs, and the response
variable is Y. The relationships between the input variables
can be expressed through different functions that combining
the input variables together, as follow:

SV‘vI(Xl X2) (1)

= SV,\A(X1 Xz, X3) 2)
Ys = SV,\A(X1 X2, X3, Xa) (3)
Ya= SV,\A(X1 Xz, X3, X4, Xs) (4)
= SV,\A(X1 Xz, X3, X4, X5, X6) (5)
Y6 = SV,\A(X1 Xz, X3, X4, Xs, X6, X7) (6)
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Fig. 8. Performance of the CART model for predicting PPV on the original dataset and enriched dataset
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Tab. 3. Performance of the PPV predictive models based on the original dataset and enriched dataset

Training dataset | Testing dataset
Model 0 2
RMSE [ R [ MAE | RMSE [ R [ MAE
Original dataset
CART 0.385 0.934 0.351 0.405 0.911 0.360
KNN 0.674 0.811 0.571 0.640 0.798 0.544
RF 0.361 0.944 0.312 0.351 0.935 0.293
Enriched dataset
CART 0.404 0.929 0.351 0.392 0.921 0.332
KNN 0.522 0.878 0.451 0.438 0.903 0.354
RF 0.389 0.932 0.348 0.343 0.938 0.309
CART model KNN model
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Fig. 11. Correlation between the actual and predicted PPV values on both original dataset and enriched dataset: (a) CART model; (b) KNN model;

(c) RF model
Y, = fSVM(Xl, X2, X3, X4, Xs, Xs, X7, Xs) (7) o Radial primary kernel function:
=

Through the seven functions above, the relationships K [x, y] = exp[M] (10)
between input variables are explained. Further details of the a
dataset has been explored through the SVM functions. Fi- o Two-layer neural kernel:
nally, they are added to the original dataset as the additional
input variables to provide more detail of the dataset’s infor- K(x.,y)=tanh[a(x-¥) 5] (11)

mation. In other words, the SVM functions based on differ-
ent combination of input variables artificially increased the
size and diversity of the assumed dataset. The principle of the
SVM model is brief described as below.

The SVM, a machine learning algorithm introduced by
Cortes and Vapnik [38], is designed to minimize structural
risk, enabling better generalization from a limited set of sam-
ples. SVM has the ability to tackle classification and regres-
sion tasks. In the context of regression, it is referred to as Sup-
port Vector Regression (SVR), which constructs a forecasting
model based on a subset of the training dataset [39].

To predict blast-induced PPV, SVR can be executed using
one of the kernel functions listed below:

o Linear kernel:

K(x,y)=x-y (8)
o Polynomial kernel:
K(xy)=[r-3) +1F d=(.2..) ©)

2.2. Machine learning models for predicting PPV
2.2.1. k-nearest neighbors (KNN)

KNN, proposed by Altman [40], stands out as one of the
simplest supervised-learning algorithms in AI. It falls under the
category of lazy machine learning since it doesn't learn from
training datasets. Instead, KNN makes predictions for new data
points based on computations conducted using existing data.
This instance-based or memory-based learning algorithm is
versatile, supporting both classification and regression tasks.

For classification problems, KNN determines the output
of a data point by looking at the nearest known data point
(k = 1) or the weighted average of the closest neighbors' out-
puts. In regression problems, the output is calculated based
on the relationship with the nearest data point, depending on
the distance.

In essence, KNN predicts the output for a new data point sole-
ly based on the information from k data points in the closest train-
ing set (k-neighborhood), disregarding any interference from the
surrounding data points. For more in-depth details about the
KNN algorithm, refer to Song, Liang [41] and Chae, Lee [42].

84

Inzynieria Mineralna — Lipiec - Grudzieti 2023 July - December — Journal of the Polish Mineral Engineering Society



Interestingly, KNN has been recommended as one of good
solutions for predicting blast-induced PPV in open-pit mines
[43]. Therefore, this study explores its application for this spe-
cific purpose. The next section delves into the process of de-
termining the number of neighbors and setting up the KNN
model. Figure 1 presents the mechanism of the KNN model.

2.2.2. Classification and regression trees (CART)

The CART algorithm, widely used in statistical communi-
ties, is a non-parametric decision tree algorithm used to pre-
dict dependent variables based on independent variables [45].
Inspired by the growth of trees in nature, the CART decision
tree operates by segregating independent variables into ho-
mogeneous regions, characterized by roots, leaves, branches,
and nodes [46, 47].

Breiman, Friedman [48] describe CART as an estimating
method that doesn't rely on initial hypotheses about the re-
lationship between dependent and independent variables. It
efficiently identifies significant variables while discarding un-
important ones and demonstrates excellent handling of out-
liers, which can be detrimental to statistical models. The key
features of the CART algorithm are as follows:

o Data extraction at a node is based on the value of a

specific variable, applying predefined rules.

o It utilizes specific criteria to control the creation of

complex trees.

o Pruning is employed to optimize the model's perfor-

mance.

o The algorithm calculates and predicts the output for

terminal nodes.

For this particular study, the CART algorithm was chosen
as the benchmark regression algorithm to predict seismic vi-
bration caused by blasting in fragmenting rock. The next sec-
tions provide detailed explanations of the CART model setup
and PPV forecasts.

2.2.3. Random forest (RF)

RE, proposed by Breiman [49], is an ensemble machine
learning algorithm belonging to the group of decision tree al-
gorithms. It is versatile, capable of solving both classification
and regression problems. The essence of RF lies in constructing
multiple decision trees through bootstrap aggregation (bag-
ging) [50, 51]. It combines the results from these trees to make
a final decision. Each tree is trained with a random selection
of variables and data samples from the initial training dataset.

For the prediction of blast-induced PPV, RF was applied
as follows:

o Thenumber of trees was chosen to ensure a rich forest.

o Bootstrap samples were drawn with replacement

from the original PPV training dataset. The remain-
ing values were used for validation and referred to as
out-of-bag (OOB) data.

e Anon-pruning regression was developed with modi-

fications at each node for each bootstrap sample.

o Ateach bootstrap iteration, OOB data was used to pre-

dict PPV, and the results were averaged across all trees.

o Performance indices such as RMSE, R2, and MAE

were used to evaluate the accuracy of predicted PPV
values on OOB.

3. Data preparation and model development
3.1. Original datasets

In this study, a dataset consists of 216 blasting events was
collected at the Coc Sau open-pit coal mine (Vietnam). This is
the deepest open-pit coal mine in Vietnam (-300 m below sea
level), as shown in Figure 3.

With the hardness of rock is in the range of 10 to 14, blast-
ing is still the most effective method for fragmenting rock in
this open-pit mine. Herein, the dataset with the parameters,
such as burden (B), spacing (S), rock hardness (f), powder
factor (PF), maximum explosive charge per delay (Q), and
PPV monitoring distance (D), were collected and measured
for predicting PPV at the Coc Sau open-pit coal mine. The
details of the original dataset is shown in Table 1 and its visu-
alization is shown in Figure 4.

Accordingly, B, S, f, PE, and Q were exported from the
blast patterns, and D was measured by a GPS receiver from
the blast sites to the geo-phone blasting. PPV was measured
by the Micromate device (Instantel - Canada). Figure 5 shows
a result of PPV that was measured by Micromate at the Coc
Sau open-pit coal mine.

3.2. Data enrichment

As previously introduced, the SVM algorithm was em-
ployed to elucidate the correlations among the input variables,
as outlined in Equations (1-7). Within this research, the origi-
nal dataset encompassed 6 input variables. The SVM algorithm
dissected these relationships through 5 distinct SVM models,
namely: the SVM model involving the B and S variables; the
SVM model involving the B, S, and F variables; the SVM model
involving the B, §, f, and PF variables; the SVM model involving
the B, S, f, PE, and q variables; and the SVM model involving
the B, S, f, PF, q, and S variables. For each model, an additional
novel variable was generated based on the SVM model's pre-
dictive outcomes. Consequently, this yielded 5 supplementary
variables (A1, A2, A3, A4, A5), augmenting the original data-
set to a more comprehensive state featuring 11 input variables.
The particulars of this enriched dataset are presented in Table
2, with its visualization depicted in Figure 6.

The findings depicted in Figure 6 reveal noteworthy cor-
relations between five supplementary variables. Consequently,
the initial four supplementary variables were eliminated from
the augmented dataset. The ultimate supplementary variable,
however, was retained due to its capability to elucidate the in-
terrelationships among the remaining variables. As a result,
the operational dataset encompasses seven input variables. It's
important to note that the final input variable was generated
via the SVM algorithm, leveraging the inherent relationships
among the original input variables. This enrichment process
significantly enhanced the dataset's informational content
compared to its original state. The resulting enriched dataset,
subsequent to analysis, is presented visually in Figure 7.

4. Results and discussion

After successfully completing the enrichment process, the
KNN, CART, and RF models were developed for PPV pre-
diction using both the original and enriched datasets. Subse-
quently, the predictive outcomes were compared before and
after the enrichment process to assess the effectiveness of the
SVM algorithm in enhancing the PPV dataset.
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In preparation for constructing the predictive models,
both the initial and enriched datasets were split into two equal
parts following a 70/30 ratio. This allocation designated 70%
of each dataset for model training, while the remaining 30%
was reserved to evaluate model performance in practical sce-
narios. To avert overfitting during model development, tech-
niques such as 5-fold cross-validation with 3 repetitions, Box-
Cox transformation, and center scaling were implemented.

It's important to emphasize that all models employed
identical training and testing datasets for both training and
validation phases. Within this study, the Root-mean-squared
error (RMSE) function was adopted as the loss metric while
training the CART, KNN, and RF models for PPV prediction.

For the CART model, the complexity parameter was used
to control the accuracy of this model, and a grid search in
the range of 0.002 to 0.1 was used to determine the optimal
parrameter of the CART model on the original dataset and
enriched dataset. The training results on the original dataset
and enriched dataset are shown in Figure 8.

For the KNN model, three parameters, including the
maximum number of neighbors (k), the distance beween the
nearest neighbors, and kernel function were used to control
the accuracy of the accuracy of the KNN model. A random
search technique with 100 different KNN models based on
100 different set of parameters were emplemented on both the
original dataset and enriched dataset, as shown in Figure 9.

For the RF model, the number of trees in the forest and
random selected predictors were used to control the accu-
racy of this model. According to the experience of previous
researchers, a diversity of trees in the forest can improve the
prediction performance of the RF model. Therefore, it was
selected equal to 2000 trees in this study. In addition, a grid
search in the range of 1 to 6 for the original dataset, and a
range of 1 to 7 for the enricheed dataset, were applied during
developing the RF model for predicting PPV in this study. The
training results are shown in Figure 9.

Once the CART, KNN and RF models were developed on
both original dataset and enriched dataset, the testing data-
sets of both original and enriched datasets were used to vali-
date the performance of the developed models. Performance
metrics, including RMSE, determination coefficient (R*) and
mean absolute error (MAE) were calculated according to
equations (12-14) to evaluate the performance of the devel-
oped models, as shown in Table 3.

RMSE:\/ ! 3 (PPV,-PPV.)’ (12)
Moies ble=1
Y (pPy,-FPPr.)
Ri=]- e — (13)
> (PPv,-PPV.)
biar=1
Ty
MAE = > |PPV, - PPV, (14)
Myt Blast=1
where n, . is the number of blasting cases used in the dataset;

PPV, PPV, and PPV, stand for the measured PPV, predicted
PPV, and mean of measured PPVs.

Across all models and datasets, the RMSE values reflect
the average magnitude of prediction errors. Smaller RMSE
values indicate better predictive accuracy. R* values provide
an indication of how well the model's predictions fit the actual
data. Higher R? values suggest a better fit. MAE measures the

average absolute difference between predictions and actual
values. Lower MAE values indicate better accuracy.

Based on the obtained results in Table 3 and comparing
the original and enriched datasets, there are noticeable changes
in the performance metrics. The RMSE values in the enriched
dataset are indeed smaller, indicating better predictive accura-
cy compared to the original dataset. Of those, the RF model
consistently performs well on both datasets in terms of RMSE,
R’ and MAE, suggesting its robustness in this context. Also,
the KNN model demonstrates improvements in performance
on the enriched dataset, particularly in terms of RMSE and R*.
And tHe CART model's performance remains relatively stable
between the two datasets, and its performance on the enriched
dataset is also slightly better than those of the original dataset.
Figure 10 shows the correlation between the actual and predict-
ed PPV values on both original dataset and enriched dataset.

As illustrated in Figure 10, the proximity between the pro-
jected outcomes and the actual PPV measurements is notably
enhanced in the results obtained from the enriched dataset, in
contrast to the projected PPV values originating from the orig-
inal dataset. This implies that the predictive models exhibited
greater convergence when applied to the enriched dataset com-
pared to the original dataset. This observation strongly suggests
that the enrichment process substantially bolstered the predictive
models' efficacy in forecasting PPV within the scope of this study.

5. Conclusion
Blasting constitutes a pivotal component of surface min-
ing technology, yet its ramifications, notably the considerable
impact of blast-induced ground vibration (quantified as PPV
in this study), wield a significant influence on the surround-
ing environment, warranting precise prediction and control. To
address this issue, two viable approaches have been identified:
Enhancing Predictive Models: One strategy involves refin-
ing predictive models through the implementation of diverse
optimization techniques or clustering methodologies.
Dataset Enrichment: Another avenue involves augmenting
the dataset to furnish more intricate details, thereby enabling
predictive models to forecast PPV with heightened accuracy.
In the context of this investigation, we have proposed a prom-
ising remedy to augment the precision of PPV predictive models
(specifically CART, KNN, and RF models) employed in open-pit
mining settings. This solution involves leveraging machine learn-
ing algorithms, notably the SVM algorithm. The outcomes gar-
nered underscore the potential of machine learning algorithms
in elucidating the interplay among input variables within the
original dataset. The resultant insights can then be employed as
supplementary variables to enhance the original dataset, thereby
facilitating the improved performance of predictive models in
PPV prognostication. Utilizing this data enrichment technique,
novel Al-based models can enhance their accuracy to a greater
extent compared to utilizing the original dataset alone.
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